22,592 research outputs found

    Sparse Matrix Inversion with Scaled Lasso

    Full text link
    We propose a new method of learning a sparse nonnegative-definite target matrix. Our primary example of the target matrix is the inverse of a population covariance or correlation matrix. The algorithm first estimates each column of the target matrix by the scaled Lasso and then adjusts the matrix estimator to be symmetric. The penalty level of the scaled Lasso for each column is completely determined by data via convex minimization, without using cross-validation. We prove that this scaled Lasso method guarantees the fastest proven rate of convergence in the spectrum norm under conditions of weaker form than those in the existing analyses of other β„“1\ell_1 regularized algorithms, and has faster guaranteed rate of convergence when the ratio of the β„“1\ell_1 and spectrum norms of the target inverse matrix diverges to infinity. A simulation study demonstrates the computational feasibility and superb performance of the proposed method. Our analysis also provides new performance bounds for the Lasso and scaled Lasso to guarantee higher concentration of the error at a smaller threshold level than previous analyses, and to allow the use of the union bound in column-by-column applications of the scaled Lasso without an adjustment of the penalty level. In addition, the least squares estimation after the scaled Lasso selection is considered and proven to guarantee performance bounds similar to that of the scaled Lasso

    Calibrated Elastic Regularization in Matrix Completion

    Full text link
    This paper concerns the problem of matrix completion, which is to estimate a matrix from observations in a small subset of indices. We propose a calibrated spectrum elastic net method with a sum of the nuclear and Frobenius penalties and develop an iterative algorithm to solve the convex minimization problem. The iterative algorithm alternates between imputing the missing entries in the incomplete matrix by the current guess and estimating the matrix by a scaled soft-thresholding singular value decomposition of the imputed matrix until the resulting matrix converges. A calibration step follows to correct the bias caused by the Frobenius penalty. Under proper coherence conditions and for suitable penalties levels, we prove that the proposed estimator achieves an error bound of nearly optimal order and in proportion to the noise level. This provides a unified analysis of the noisy and noiseless matrix completion problems. Simulation results are presented to compare our proposal with previous ones.Comment: 9 pages; Advances in Neural Information Processing Systems, NIPS 201
    • …
    corecore